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Abstract The local ensemble transform Kalman filter (LETKF) is used to develop a strongly coupled
data assimilation (DA) system for an intermediate complexity ocean-atmosphere coupled model. Strongly
coupled DA uses the cross-domain error covariance from a coupled-model background ensemble to allow
observations in one domain to directly impact the state of the other domain during the analysis update.
This method is compared to weakly coupled DA in which the coupled model is used for the background, but
the cross-domain error covariance is not utilized. We perform an observing system simulation experiment
with atmospheric observations only. Strongly coupled DA reduces the ocean analysis errors compared to
weakly coupled DA, and the higher accuracy of the ocean also improves the atmosphere. The LETKF system
design presented should allow for easy implementation of strongly coupled DA with other types of
coupled models.

1. Introduction

Data assimilation (DA) combines real-world observations with model forecasts to produce an analysis of
present conditions. Traditionally, DA systems have analyzed the ocean and atmosphere separately even if the
respective models are then run as a coupled system for forecasting. Reasons for this include a higher observa-
tional coverage in the atmosphere compared to the ocean as well as asymmetric development in atmospheric
and oceanic DA. For example, both National Centers for Environmental Prediction (NCEP) [Kleist and Ide, 2015]
and European Centre for Medium-Range Weather Forecasts [Bonavita et al., 2012] have operational hybrid
ensemble/variational DA systems for the atmosphere while still using a traditional 3-D-variational method for
the ocean [e.g., Saha et al., 2014; Mogensen et al., 2012]. The different temporal and spatial scales of the two
domains increases the complexity of coupled DA [Lawless, 2012]. Practical issues such as different grid types
by each model add complications as well.

Coupled DA can broadly be divided into two categories: weakly coupled and strongly coupled. Weakly coupled
DA uses a coupled-model forecast to provide the background while the analysis update is performed sepa-
rately for the two domains [e.g., Zhang et al., 2007; Lea et al., 2015]. The only method of information exchange
between the ocean and atmosphere in this case is through the exchange of surface fluxes and sea surface
temperature (SST) during the model integration for the forecast. Additional improvements can be made with
weakly coupled DA if the coupled model is used in the outer loop of the otherwise separate variational DA
systems [Laloyaux et al., 2015], allowing observations to indirectly impact the analysis of the opposite domain.

Recently there has been some research focused on improving data assimilation for coupled
ocean-atmosphere systems by analyzing the two domains as a single system. Strongly coupled DA is able
to transfer information between the atmosphere and ocean by using the cross-domain error covariance.
Such coupling allows observations in one domain to instantaneously impact the state variables in the other
domain during the analysis update. Strongly coupled DA should be able to extract more information from
the same observations, retain a better balance between the two domains, and is considered the preferable
method for future coupled DA systems, as discussed at the 2012 International Workshop on Coupled Data
Assimilation [Lawless, 2012]. No operational strongly coupled DA systems currently exist, and few studies
have looked at using strongly coupled DA for realistic coupled general circulation models (CGCM). Studies
that have focused on strongly coupled DA with a realistic CGCM have relied on averaged atmospheric
observations assimilated into the ocean at a lower frequency than that of the atmospheric DA [Lu et al., 2015].
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For strongly coupled DA systems to be practical for operational numerical weather prediction (NWP), the
ocean and atmosphere DA cycles should use similar observational windows. Ensemble Kalman filters (EnKF),
in contrast to variational methods, perform best with short assimilation windows [Kalnay et al., 2007]. Thus,
the EnKF allows for both systems to be assimilated at the shorter window length of the atmosphere [Singleton,
2011]. Several studies using either an EnKF [Lu et al., 2015; Liu et al., 2013; Han et al., 2013; Luo and Hoteit, 2014;
Tardif et al., 2013] or four-dimensional variational data assimilation [Smith et al., 2015] have examined idealized
models with strongly coupled DA operating at similar time scales for the two domains. Liu et al. [2013] found
that strongly coupled DA provides substantial improvements, with the greatest impacts seen by assimilating
atmospheric observations into the ocean in the extratropics.

This study investigates strongly coupled DA using a realistic CGCM by creating an EnKF system designed
with an operational NWP cycle in mind. Two separate local ensemble transform Kalman filters (LETKF) [Hunt
et al., 2007], one each for the ocean and atmosphere, are implemented as a strongly coupled DA system
by sharing observation innovations between the two systems. As a first step in testing this system we con-
duct a perfect model observation system simulation experiment (OSSE) with an intermediate complexity
CGCM to determine if it can improve both domains when only atmospheric observations are available. As
the historical record for ocean observations is extremely sparse, this scenario is particularly relevant for
reanalysis in the pre-Argo era, e.g., prior to 2000 [Roemmich et al., 2009], and provides an example of how
such a strongly coupled DA system using both atmospheric and oceanic observations simultaneously could
be implemented.

2. Methodology
2.1. Model
In this perfect model OSSE we use an intermediate complexity coupled model, SPEEDY-NEMO [Kucharski et al.,
2015], chosen for its ability to represent realistic physics with low computational cost. The atmosphere consists
of the Simplified Parameterizations, primitivE-Equation DYnamics (SPEEDY) model, version 41 [Molteni, 2003;
Kucharski et al., 2006]. SPEEDY is a hydrostatic, eight-level sigma coordinate spectral model with T30 resolution
and is capable of producing realistic atmospheric phenomenon despite simplified parameterizations. The
ocean consists of the Nucleus for European Modeling of the Ocean (NEMO) v3 ocean dynamics model [Madec,
2008]. NEMO is configured with 30 vertical levels using z coordinates and a 2∘ horizontal tripolar grid that
tapers to 0.25∘ latitude along the equator to capture equatorial wave dynamics. We modified the original
SPEEDY-NEMO by changing the coupling and model output period from 24 h to 6 h. The model is coupled
by exchanging SST from the ocean to the atmosphere, and total heat flux, shortwave solar radiation, wind
stress, and evaporation minus precipitation (E − P) from the atmosphere to the ocean. Sea ice distribution
is prescribed using observed monthly climatology from ERA-15 [Gibson et al., 1999]. Following Kröger and
Kucharski [2011], a one-way anomaly coupling is applied from the ocean to the atmosphere which corrects a
cold bias in the East Pacific and allows for El Niño–Southern Oscillation-type variability to occur.

2.2. Data Assimilation
The LETKF [Hunt et al., 2007] is a type of EnKF, using an ensemble of forecasts

{
xb(i) ∶ i = 1, 2,… , k

}
to deter-

mine the statistics of the background error covariance. This information is combined with new observations,
yo, to generate an analysis mean, x̄a, and a set of new ensemble members, xa(i). First, the model state is mapped
to observation space by applying a nonlinear observation operator H to each background ensemble member
yb(i) = Hxb(i). If the observed and modeled variables are the same, H is simply an interpolation of the model
state to the observation locations. The weights w̄a are calculated to find the analysis mean x̄a

P̃a =
[
(k − 1) I +

(
Yb

)T
R−1Yb

]−1
(1)

w̄a = P̃a
(

Yb
)T

R−1
(

yo − ȳb
)

(2)

x̄a = x̄b + Xbw̄a (3)

where x̄b and ȳb are the ensemble mean of the background in model space and observation space,
respectively, Xb and Yb are the matrices whose columns represent the ensemble perturbations from those
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Figure 1. Schematic of the LETKF configuration for the coupled system. Shared observational departures (red arrows)
between the separate LETKF systems enable them to perform as a strongly coupled data assimilation system. For this
study only atmospheric observations were used and so the components in blue were not utilized.

means, and R is the observation error covariance matrix. Last, the set of weights Wa are calculated to find the
perturbations in model space for the analysis ensemble by

Wa =
[
(k − 1) P̃a

]1∕2
(4)

Xa = XbWa (5)

In practice, the LETKF is able to calculate the above equations in parallel for each grid point j using the subset
of observations, yo

j , within its localization radius. For weakly coupled DA, yo
j contains only observations from

the same domain as the grid point being considered, whereas yo
j can contain both atmospheric (yo

atm) and
ocean (yo

ocn) observations in strongly coupled DA.

The LETKF analysis benefits from strongly coupled DA in two key ways. First, the calculation of x̄a by
equations (1)–(3) uses the cross-domain error covariance to allow observations in one domain to directly
inform the analysis mean calculated at grid points in the other domain. Second, the creation of the analy-
sis ensemble by equations (4) and (5) maintains balance between the two domains within each ensemble
member. Neighboring grid points use overlapping sets of observations, and since yo

j will be nearly identi-
cal for adjacent grid points, Wa

j will be similar as well [Yang et al., 2009]. Similar weights for neighboring grid

Figure 2. Location of atmospheric observations at 00Z for synthetic rawinsonde observations (red) and satellite
retrievals (blue). The location of satellite retrievals changes for 06Z, 12Z, and 18Z to provide global daily coverage.
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Figure 3. Spatially averaged difference of analysis RMSE for STRONG − WEAK in the Northern Hemisphere midlatitudes
(blue), tropics (green), Southern Hemisphere midlatitudes (red), and globally (black). Variables shown are the (a and c)
ocean temperature and (b and d) salinity for the surface only (Figures 3a and 3b), and deep ocean (Figures 3c and 3d).

points, both vertically and horizontally, ensure the ensemble perturbations are kept “matched together” at
the domain interface. Weakly coupled DA is not able to retain this ocean-atmosphere surface balance within
the ensemble members.

3. Experiment Design

We conduct a perfect model OSSE with SPEEDY-NEMO and LETKF using synthetic atmospheric observations
and compare weakly coupled DA (WEAK) with strongly coupled DA (STRONG). The atmospheric LETKF devel-
oped for SPEEDY by Miyoshi [2005] and the ocean LETKF system developed for NCEP by Penny et al. [2015] are
used. For WEAK the two LETKF systems operate separately. For STRONG the output of the atmospheric obser-
vation operator is passed to NEMO-LETKF (Figure 1). For both experiments SPEEDY-LETKF and NEMO-LETKF
are run concurrently using 40 members and a 6 h analysis cycle using an identically configured coupled model
for the two experiments.

SPEEDY-NEMO is first initialized with climatological ocean temperature and salinity and run freely for 20 years
to spin-up. The subsequent 6 years are saved as the nature run and are the truth to which the two experiments
are compared. From this run synthetic rawinsonde observations and satellite retrievals are generated every
6 h at the locations shown in Figure 2, providing observations of surface pressure (Ps) and vertical profiles of
temperature (T), humidity (q), and wind (U, V). Independent Gaussian errors are added with zero mean and
unit standard deviation (1 hPa, 1∘C, 1 g/kg, and 1 m/s). No ocean observations were generated or assimilated
in these experiments. For simplicity, observations are only generated at the analysis times, though a 4-D-LETKF
using observations throughout a window would be expected to perform similarly.

Starting with an arbitrary date denoted January 2005, both experiments are initialized with identical ensem-
ble members randomly chosen from dates in subsequent years of the nature run. For WEAK, the atmospheric
observations are only assimilated into the atmosphere. The ocean is updated in this case every 6 h exclusively
by fluxes from the atmospheric model during the integration of the forecast. For STRONG, the atmospheric
observational departures are also used by the NEMO-LETKF, enabling the ocean to be corrected by both the
atmospheric fluxes from the coupled forecast and by the NEMO-LETKF analysis updates with information from
the atmospheric observations. In both cases the atmosphere (xa

atm) and ocean (xa
ocn) analyses are generated

separately by the respective SPEEDY-LETKF and NEMO-LETKF, though for STRONG this is identical to a single
LETKF handling the entire state (xa), due to sharing cross-domain observational departures.
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Figure 4. Time mean difference of analysis RMSE for STRONG − WEAK for the final 5 years (2006–2010). Shown are
(a, c, and e) ocean temperature and (b, d, and f ) salinity over the upper 512 m (Figures 4a and 3b), and latitude-depth
cross sections averaged over the Pacific (Figures 3c and 3d) and Atlantic (Figures 3e and 3f ) basins.

To account for errors in the background estimate, covariance inflation is required to keep the ensemble
spread from collapsing. There are several choices for covariance inflation including constant multiplicative
[Anderson, 2001], adaptive multiplicative [Miyoshi, 2011], additive [Houtekamer and Mitchell, 2005], relaxation
to prior background [Zhang et al., 2004], and stochastic physics parameterizations, [Shutts, 2005; Berner et al.,
2009]. We use here the relaxation to prior spread (RTPS) method of Whitaker and Hamill [2012]. This method
expands the magnitude of the ensemble perturbations after the analysis a percentage, 𝛼, toward the prior
spread while keeping the direction of the perturbations consistent for each coupled ensemble member. The
RTPS parameter was chosen as𝛼 = 0.6 for the atmosphere and 𝛼 = 0.9 for the ocean, resulting in an ensemble
spread of similar magnitude to the root-mean-square error.

A horizontal observation localization of 1000 km is used, defined as the scaling distance of a Gaussian localiza-
tion function [Greybush et al., 2011; Gaspari and Cohn, 1999]. Vertical localization in the atmosphere is carried
out by each model level so that observations at one level have minimal impact on adjacent levels. No vertical
localization is used within the ocean, which provides better balance within the ocean and reduces the com-
putational cost of the data assimilation by requiring only a single set of weights to be generated for the ocean
column. All levels in an ocean column are therefore impacted by the observations in the lowest levels of the
atmosphere with strongly coupled DA.

4. Results

The difference in analysis RMSE as compared to the nature run truth for STRONG minus WEAK (Figure 3) shows
that the ocean is significantly improved when assimilating only atmospheric observations. Similar results are
also found in the background RMSE (not shown). The near-surface ocean temperatures and SSH RMSE are
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Figure 5. Time mean difference of analysis RMSE for STRONG − WEAK for the final 5 years (2006–2010). Shown are
(a) atmospheric temperature and (b) humidity at the lowest model level, and (c) zonal wind speed throughout the
troposphere.

reduced compared with the WEAK results by about 50% after a spin-up of a couple of weeks. The Northern
Hemisphere (NH) and tropics, which have the largest initial errors in WEAK, also improve the most in STRONG.
Ocean salinity errors are reduced more slowly than temperature, but this reduction continues for several years.
Globally, the strongly coupled DA reduces errors in salinity and temperature an average of 46% in the upper
ocean over the last 5 years of the experiment. Annual variations in the RMSE reduction by STRONG can be seen
at the ocean surface (Figure 3a). The NH midlatitudes experience the greatest improvement in SST during the
spring months, averaging 52% over the last 5 years while only 37% during the summer months. This result
could be expected due to stronger midlatitude atmospheric dynamics driving the ocean during the winter
and spring months.

Figure 4 shows the spatial patterns of analysis RMSE reduction between the two cases. The ocean state is
improved most in the NH midlatitudes where the greatest density of atmospheric observations is and where
the ocean is generally considered to be driven by weather anomalies. The NEMO-LETKF is configured to use
no vertical localization in the ocean, which enables observations above the ocean to impact the entire water
column, accelerating the improvement of the barotropic mode of the ocean. Though not using any vertical
localization risks creating spurious correlations for vertically distant points, the LETKF is shown to perform bet-
ter in the ocean without vertical localization [Penny et al., 2015]. The strongest improvements in the northern
Atlantic extend down below 2.5 km. Although SST errors are not reduced significantly in the tropical Pacific,
RMSE errors of the subsurface waters in the upper 250 m are reduced by about 1∘C.

Figure 5 shows that by assimilating atmospheric observations into the ocean, the corrected sea surface
temperatures in STRONG reflect back on the atmosphere, resulting in a reduction in atmosphere RMSE.
Improvements in atmospheric temperature and humidity at the lowest model levels overlap the same areas
of the ocean (Figure 4) experiencing corrected SSTs. Precipitation and other fluxes are all improved in these
areas (not shown). Zonal winds are improved throughout the troposphere of the tropical Pacific, presumably
from an improved Walker circulation, as well as over the oceanic NH midlatitudes.

In addition to the STRONG and WEAK cases using all atmospheric observations, similar experiments were
performed using only rawinsonde observations. Though extremely few observations are directly over the
oceans, the strongly coupled data assimilation was still able to provide similar improvements in most regions,
except for the Southern Hemisphere where there are too few rawinsondes.
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5. Summary

By performing strongly coupled DA, where the ocean-atmosphere states and observations are effectively
treated as a single system, improvements are seen in both domains compared to weakly coupled DA. Sharing
ensemble observational departures between the SPEEDY-LETKF and NEMO-LETKF systems takes advantage
of the cross-domain background error covariance and allows atmospheric observations to directly impact the
ocean analysis. Balance between the domains within ensemble members is also retained. These benefits lead
to a substantial reduction in analysis RMSE of the ocean state in our perfect model experiments, which due
to the lack of vertical localization extends throughout the vertical column of the ocean.

For simplicity we performed strongly coupled DA experiments with only atmospheric observations, which the
ocean was also allowed to assimilate. Preliminary experiments suggest that the complementary experiment,
with ocean observations assimilated by the atmosphere, also results in analysis RMSE reductions compared to
weakly coupled DA. This substantial improvement in both the ocean and the atmosphere analysis errors indi-
cates that the strong coupling of the ocean-atmosphere DA has the potential to improve weather and climate
forecasts compared to the currently performed weakly coupled DA. The SPEEDY-NEMO model used, however,
is only able to exchange fluxes every 6 h, the same time as the assimilation. The strength of the cross-domain
covariance information is reduced by not coupling more frequently and prevents all observations, both atmo-
sphere and ocean, from being assimilated at the same time for these experiments. Future research will use a
CGCM with more frequent model coupling such as the Climate Forecasting System v2 [Saha et al., 2014].

Given the nearly “black-box” nature of the LETKF, automatic generation of cross-domain background error
covariance, and the simple implementation provided by retaining separate LETKF code for each domain,
strongly coupled DA has the potential to be applied to data assimilation for all the Earth subsystems, including
land, chemistry, sea ice, land ice, ocean surface waves, and clouds.
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